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Recently great interest has been directed toward problems of gravitational collapse.
As the theory of collapse becomes more advanced, complications (such as rotation and
magnetic field), which were neglected in pioneering work, are being gradually included.
As pointed out by Woltjer (1964) some years ago, field strengths of the order of 10
gauss may be achieved in gravitational collapse. The classical theory of electrodynamics
is expected to break down when the spin interaction energy ugH (where up is the Bohr
magneton = e/ 2mc and H is the magnetic field) exceeds mc?; it would therefore be possi-
ble, according to classical concepts of energy conservation, to create a pair of electrons
spontaneously with proper orientations of spin when the field strength exceeds H, (where
H, = m?c/eh = 4.414 X 10" gauss). Questions have been raised as to whether a mag-
netic field may be destroyed by spontaneous pair creation. To answer this question and
others, it is necessary to develop a quantum theory of matter in intense magnetic fields.

In a series of papers (Chiu and Canuto 1968; Canuto and Chiu 1968a—c), we have
studied the detailed properties of matter in intense magnetic fields. In this paper we shall
discuss some results of astrophysical interest. We have considered two cases: (@) the
magnetic moment of the electron is the Dirac moment e%/2mc and (b) in addition to the
Dirac moment the electron also possesses a Schwinger anomalous magnetic moment
aehi/4mmc. When the field is of the order of 106 gauss, the anomalous magnetic moment
becor)nes important and must be taken into account (Chiu, Canuto, and Fassio-Canuto
1968).

a) According to Dirac’s theory the magnetic moment of the electron is exactly 1
Bohr magneton, ug. Solutions to the Dirac equation of an electron in an external mag-
netic field were obtained several decades ago (Rabi 1928). The energy eigenvalues are
(Canuto and Chiu 1968q)

E=+4mdl + "+ (2n+ 1+ H/HJ'"*, (1

where 7, the principal quantum number characterizing the size of the circular motion of
an electron in a magnetic field, takes values from 0 to «; s = + 1 characterizes the two
spin states, where s = —1 corresponds to the parallel and s =41 to the antiparallel
cases. H is the magnetic field in the s-direction (H, = m?c3/et = 4.414 X 10'® gauss);
x = p./mc; P, is the z-momentum of the electron; m is electron mass; and the rest of the
symbols have their usual meanings. The plus and minus signs correspond to electron
and positron states, respectively. It is seen in equation (1) that there is a twofold
degeneracy between the state # and s = 1 and the state # + 1 and s = —1. The lowest-
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energy states of the electron and positron (x =0, n =0, s = —1) are +mc?. This
means that the separation energy between the positron and electron states is still 2mc?,
unaltered by the presence of a magnetic field. This implies that pairs are not created
spontaneously at field strengths greater than 10'* gauss even when the classical spin
interaction energy upH exceeds mc2.

The equations of state, however, exhibit a strong anisotropy, especially when the
electrons are mainly in states of small quantum numbers # (Canuto and Chiu 1968aq, b).
The most important case of interest is that of a degenerate electron gas in a magnetic
field. In this case, states up to some quantum number # and some Fermi energy Ep
(Er includes the rest energy mc?) are occupied. The equations of state are

Pro = Pyy = w4 me/N) (/B SnCrlu/an) @
P 3B/ (160 + ZeiCutw/an], ®
U = w2(met /8 (/) [0 + DarCau/an) ], @

N = @/ 100 + SeaCulu/an)] ©

where P, P,,, and P,, are normal stresses in the x-, y-, and z-directions; U is the total
energy density (including the rest energy of the electrons); NV is the particle number
density; u = Ep/mc?®; an = (1 4+ 2nH/H,)'/?; and X, = #/mc is the Compton wave-
length of the electron. The functions Ci(x) are defined as

Ci(w) =In [ 4+ (& — DV, Ci(u) = 3Ci(w) + 3u@® — 12, (6)
and
Co(w) = (2 — 12, Cow) = Cs(w) — Co(w) (7)
and the upper limit of summation  is determined by the condition
On S p < Gy - (8)

The pressure of the gas is very anisotropic, and, for values of u such that u < a; =
(14 2H/H,)'?, the stress perpendicular to the field (P,, and P,,) even vanishes and
the gas in this limit is exactly a one-dimensional gas! Figure 1 shows the behavior of the
equation of state. In general, all thermodynamic variables have kinks and discontinuous
derivatives where a new magnetic state is excited. At large values of m, the equation of
state approaches that of a degenerate electron gas obtained by Chandrasekhar (1967).

The total induced magnetic moment M of an electron gas is given by the following
expression (Canuto and Chiu 1968c¢)

M =M/Mo = 3Co(u) + ;arﬁCz(ﬂ/ a,) — (H/ Hq)g{ncl(u/ @n) - (9)

In general, the maximum value of induced field due to induced magnetic moment is only
102 of that of the impressed field. On the basis of this result, we concluded that ferro-
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Fic. 1.—Functional dependence of P,z/Pyz, P:./N, Pss/N, and P../N versus N/No (No = 772K, 7%)
for the degenerate case with H/H, = 1. Corresponding functions for a Fermi gas are also shown for
comparison.
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F16. 2.—Energy eigenvalues (in units of mc?) forthecasesn = 0,s = —1;n =1, s = —1;andn = 2,
s = —1 as a function of H/H, (H, = 4wH,/a). The case x = 0 is considered.
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magnetism will not exist in dense electron gas. The presence of magnetic fields in col-
lapsed bodies (if any) must therefore be due to macroscopic currents.

b) The electron possesses an anomalous magnetic moment of the amount ae#/4rmc
(a = 117) in addition to its Dirac moment, e#/2mc (Schwinger 1948). Solutions to the
Dirac equation with an anomalous magnetic moment have recently been obtained by
Ternov, Bagzov, and Zhukovskii (1966). They give the following energy states:

E=+mc{x®+ {1 4+ @n + 1 4+ s)H/H,'? + saH/4wH}2)/? , (10)

where all variables have the same meaning as in equation (1), to which it reduces when
we set @ = 0. The inclusion of the anomalous magnetic moment removes the twofold
degeneracy of equation (9). The quantization of electron energy and the removal of
degeneracy are very similar to Zeeman splitting of the atomic spectrum. Figure 2 shows
the energy eigenvalues as a function of the field strength § = H/H,, where H, = 4wH,/a.

According to equation (10) the lowest-energy states of the electron or positron (with

x = 0,5 = —1, and arbitrary ») are zero when the field strength H satisfies the following
conditions:

1+ 2vH/H, = (aH/47H,)? (11)
or

dr/a ~ 10 (n =0),

H/H, = (n/0)n+ [t + a/4nppe) — 7700000 L 2S00 (1)

If it were possible for the electron to possess a negative energy, spontaneous pair creation
would be possible, at the expense of the energy of the magnetic field. However, the sign
before the square root in the expression for the energy, equation (10), is an invariant
property of the electron, so that the energy of an electron can never become less than
zero (see Fig. 2). This means that the energy of the electron will never cross that of the
positron (non-crossing property).

We thus conclude that spontaneous pair creation will not take place at all at the
expense of magnetic-field energy, even when the anomalous magnetic moment is taken
into account.

Electron pairs can still be created, however, at the expense of the thermodynamic
energy of the system. When the field strength approximately satisfies equation (12), the
rest mass of the electron is small and pair creation can take place even at temperatures
that are small compared to mc?/k = 6 X 10°° K. Expressions for the pair density have
been given previously (Chiu, Canuto, and Fassio-Canuto 1968). An interesting case
occurs when

mc2 > kT > me?| (1 + 2nH/H)'? — aH/47H,| , (13)

ie., when 7'<< 6 X 10° ° K and when the field strength is sufficiently close to those given
by equation (12). In this case pair creation is negligible in all states except the one that
satisfies equation (12). We find

ny = No(RT/mc*)ln [1 + exp (—mcPu,/kT)], n_ = ny+ ny, (14)

where n,, #n_ are positron and electron number densities; Ny = 72K %; # is the number
density of electrons without pair creation; and u. is the chemical potential of the electron
(in units of mc?) for the state m, including the equivalent rest energy for the state um,
which is

m = (1 4+ 2nH/H)'? — 4wH/aH, (15)

(um =~ 0 according to our assumption). In vacuum u, = 0, and
ny = n_ = No(kT/mc?) In 2, (16)
independent of the identity of the state that satisfies equation (12).
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The pair density thus vanishes when 7" = 0, in accordance with our conclusion shown
earlier. However, processes such as e~ 4 et — » 4 7 can still take place, dissipating the
energy of the system. This problem is currently under investigation.
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